Lemma 12 (Samples Lie in the Domain ). Suppose fpatxs;:::;xm U ( )4 are i.i.d.
uniform points and thus Ekxk? = d ?=3. Let 0< R < d be a xed radius. Then, for any

0< < 1, the probability of allm samplesx1;:::;Xm 2 BY(R) is at least 1 provided that:
!
2d  3R2 2

If R pa, then x1;:::;Xm 2 B4(R) forany m 1.
Therefore, we replace[(92) by
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Elhgj;aijS;;S]=m > @ P A =m j: (134)
Since 0 1,
P *erf( ) frf P=
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we can apply the same steps as the proof for normally distributed data in Lemmpg]9, as long as
!

2 2 _
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erf( ) p— erij (135)
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- P 41(2s 1)
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with probability at least 1  , we have that
. (136)
A PHEes 1)
To simplify the equations, if we consider 2, then Ty pi . Therefore, the

bounds can be replaced with

2d 3R2 2 . p_
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E.4 Proof of Theorem 7 [

We will show that we obtain similar results when the non-zero entries of are drawn from a
centered subgaussian distribution (see De nition 5). We restrict ourselves to the case where the
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from a centered subgaussian distribution with variance 2 and construct the matrix A 2 c™ N
so that a,; = exp(ilxk;! ji). Note that we can directly apply the result of Lemma@ to bound
the rst source of error. We provide bounds on the mutual coherence oA by bounding the
separation quantities.

Lemma 13. Construct the random feature matrix A as above. Fix0< < 1 and dene

r

= 1 - 138
t: kT T ] log —: (138)
Assume thatt < 1 and
I
p— .
2 41(2s 1)
2611 k2 .
E[k. 1 ! zk] (1 t) Iog 2 ,
N2
m 4dexp 2 ’Ek! 1 ! 2k?] log—; (139)
[
Y
R d+ 12dlog m :
Then, with probability at leastl 2 , we have
4
P 140
A PR 1 (140)
To proceed, we prove the following lemmata.
Lemma 14. Given! 1;:::;! Ny 2 RY, assume that the data pointy;:::;Xm are i.i.d. sampled
from N (0; 2l4). De ne
2
poEexp k! NG

and let ,,;, and ,,.,; be a lower and upper bound respectively withnax % For a given
0< < 1, if
4 N 2
m >— log — (141)
min
then with probability at least1 with respect to the draw of the<J°s, the mutual coherence ofA
satis es

A 2 max: (142)

Proof. Since the features are complex exponential, the norm of each is columnrl)ﬁ, thus it
su ces to only consider the inner products between pairs of columns. For a xed pair of weights
'j and! -, we have

2
Ex[ay a1 = Ex[exp(itxi;!; ! i) =exp Ek!j N (143)

where we used the characteristic function of the Gaussian distribution. In addition, we have that
Vary [a al-] 1almost surely. Given that xi's are i.i.d., we can apply Bernstein inequality to
obtain

0 1 !

. _ X ) Im2 .
PGy i 7)=P@ aal mj; mjpA 2exp e F— (144)
=1

The rest follows from the arguments in the proof of LemmaP.
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This analysis is similar to the Gaussian case; however, since we do not have access to
the probability distribution for ! , we use properties of subgaussian distributions to obtain
concentration results for the key quantities

poE kK macEmax s mn = min (145)
Lemma 15. Let! 1;:::;! y be a collection ofg-sparse i.i.d. random vectors inR® with arbitrary

supports where their nonzero entries are i.i.d. subgaussian. For any< < 1 dene

r
Then with probability at least1
max < (L+ t)E[K! 1 ! 2k2]; mn > (1 UEK! 1 ! 2k2]: (147)

Proof. Dene u= k! ;1 !,k? LetS; and S, denote the support of! 1 and ! », respectively,
each with cardinality g. De ne

G= S1\S, G =SNG G =SNG (148)
Then,
X X X
u=kq 1akP= (Py 2= (P 2P L3+ L 5 (149)
i=1 i2G i2G1 2G>,

Let Y, Y1, and Y, be the rst, second, and third terms in the above expression, respectively, and
note that they are conditionally independent givenS;; S,. By the rst part of Lemma 3, and the
fact that Y, Y1, and Y, are sums of squared 08G(2 2) random variables, it holds that [24]

v se@ 2iGi 28 2); viv, SE@ 2(q ] Gj) %4 Y (150)

Thus, conditioned on S; and Sy, we conclude thatu SE(8p 2q 2;8 2). Therefore, using

Lemmal3 yields
. . t2E[u]?
P(Gu E[u]j tE[U]) 2exp —4p—— ; (151)
16 2q 2
by noting that we can remove the conditioning given that the parameters ofu are uniformly
bounded irrespective of the location of the nonzero entries ih 1 and ! ».

Using the bounded separation properties for any; °we may write

P(mn> D=P\p kj ! K>
= . . k2
=1 P[j kj !-K< (152)
N
I 1 k2
1 > P ki !5k°<
Similarly,
P max< ° 1 N2Pk!1 k2> 0 (153)
Setting =(1 t)E[u] and °=(1+ t)E[u], yields
) t2E[u]?
P( max < (L+DE[uland min > (1 1E[U]) 1 N<exp W : (154)
q

Setting the RHS of above tol establishes the stated result.
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Now we prove Lemmd IB.

Proof. We use the notationu = k! ; ! ,k? throughout. We need to show that

4
2 — 155
A max pm (155)

holds with high probability. Conditioned on the event from Lemma 13, which does not occur
with probability at most

max < (1+ t)E[u]; min > (1 t)E[u]; (156)

we have, which again does not occur with probability at most ,

o ZO® > e 2 e @@ (0 DEW %: (157)
and so pﬂ(zs 1)!
2E[u] T log — (158)
Similarly, we have conditioned on the above event,
Gin o exp( % ma) =) hn exp( A1+ OEUD  exp( 2 *E[u)): (159)

Corollary 7.1. In the case where we hav&[k! ; ! 2k?] = 2q 2, which occurs for many
distributions of interest, if we set

r
5=4 2
= %% log - (160)
then the bounds become
254 N 2 1 41(2s 1)
22 —  log — ~log —MM—~= ;
ﬂ%q g q g >
p__ I 20+ 1) (161)
41(2s 1) *° N 2
4 — log —:
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